Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 901: 165862, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37541500

RESUMO

Acanthamoeba is an opportunistic free-living heterotrophic protist that is the most predominant amoeba in diverse ecological habitats. Acanthamoeba causes amoebic keratitis (AK), a painful and potentially blinding corneal infection. Major risk factors for AK have been linked to non-optimal contact lens hygiene practices and Acanthamoeba contamination of domestic and recreational water. This study investigated the incidence and seasonal variation of Acanthamoeba spp. within coastal lagoons located on the eastern coast of Australia and then examined the association between Acanthamoeba and water abiotic factors and bacterial species within the water. Water samples were collected from four intermittently closed and open lagoons (ICOLLs) (Wamberal, Terrigal, Avoca and Cockrone) every month between August 2019 to July 2020 except March and April. qPCR was used to target the Acanthamoeba 18S rRNA gene, validated by Sanger sequencing. Water abiotic factors were measured in situ using a multiprobe metre and 16S rRNA sequencing (V3-V4) was performed to characterise bacterial community composition. Network analysis was used to gauge putative associations between Acanthamoeba incidence and bacterial amplicon sequence variants (ASVs). Among 206 water samples analysed, 79 (38.3%) were Acanthamoeba positive and Acanthamoeba level was significantly higher in summer compared with winter, spring, or autumn (p = 0.008). More than 50% (23/45) water samples of Terrigal were positive for Acanthamoeba which is a highly urbanised area with extensive recreational activities while about 32% (16/49) samples were positive from Cockrone that is the least impacted lagoon by urban development. All sequenced strains belonged to the pathogenic genotype T4 clade except two which were of genotype clades T2 and T5. Water turbidity, temperature, intl1 gene concentration, and dissolved O2 were significantly associated with Acanthamoeba incidence (p < 0.05). The ASVs level of cyanobacteria, Pseudomonas spp., Candidatus spp., and marine bacteria of the Actinobacteria phylum and Acanthamoeba 18S rRNA genes were positively correlated (Pearson's r ≥ 0.14). The presence of Acanthamoeba spp. in all lagoons, except Wamberal, was associated with significant differences in the composition of bacterial communities (beta diversity). The results of this study suggest that coastal lagoons, particularly those in urbanised regions with extensive water recreational activities, may pose an elevated risk to human health due to the relatively high incidence of pathogenic Acanthamoeba in the summer. These findings underscore the importance of educating the public about the rare yet devastating impact of AK on vision and quality of life, highlighting the need for collaborative efforts between public health officials and educators to promote awareness and preventive measures, especially focusing lagoons residents and travellers.

2.
Environ Res ; 219: 115144, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584839

RESUMO

Marine water temperatures are increasing globally, with eastern Australian estuaries warming faster than predicted. There is growing evidence that this rapid warming of coastal waters is increasing the abundance and virulence of pathogenic members of the Vibrionaceae, posing a significant health risk to both humans and aquatic organisms. Fish disease, notably outbreaks of emerging pathogens in response to environmental perturbations such as heatwaves, have been recognised in aquaculture settings. Considerably less is known about how rising sea surface temperatures will impact the microbiology of wild fish populations, particularly those within estuarine systems that are more vulnerable to warming. We used a combination of Vibrio-specific quantitative PCR and amplicon sequencing of the 16S rRNA and hsp60 genes to examine seawater and fish (Pelates sexlineatus) gut microbial communities across a quasi-natural experimental system, where thermal pollution from coal-fired power stations creates a temperature gradient of up to 6 °C, compatible with future predicted temperature increases. At the warmest site, fish hindgut microbial communities were in a state of dysbiosis characterised by shifts in beta diversity and a proliferation (71.5% relative abundance) of the potential fish pathogen Photobacterium damselae subsp. damselae. Comparable patterns were not identified in the surrounding seawater, indicating opportunistic proliferation within estuarine fish guts under thermal stress. A subsequent evaluation of predicted future warming-related risk due to pathogenic Vibrionaceae in temperate estuarine fish demonstrated that warming is likely to drive opportunistic pathogen increases in the upper latitudinal range of this estuarine fish, potentially impacting adaptations to future warming. These findings represent a breakthrough in our understanding of the dynamics of emerging pathogens in populations of wild aquatic organisms within environments likely to experience rapid warming under future climate change.


Assuntos
Vibrionaceae , Animais , Humanos , Organismos Aquáticos , Austrália , Disbiose/veterinária , Estuários , Peixes , RNA Ribossômico 16S/genética , Temperatura , Vibrionaceae/genética , Água , Intestinos
3.
Environ Pollut ; 307: 119456, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561796

RESUMO

Anthropogenic waste streams can be major sources of antibiotic resistant microbes within the environment, creating a potential risk to public health. We examined patterns in the occurrence of a suite of antibiotic resistance genes (ARGs) and their links to enteric bacteria at a popular swimming beach in Australia that experiences intermittent contamination by sewage, with potential points of input including stormwater drains and a coastal lagoon. Samples were collected throughout a significant rainfall event (40.8 mm over 3 days) and analysed using both qPCR and 16S rRNA amplicon sequencing. Before the rainfall event, low levels of faecal indicator bacteria and a microbial source tracking human faeces (sewage) marker (Lachno3) were observed. These levels increased over 10x following rainfall. Within lagoon, drain and seawater samples, levels of the ARGs sulI, dfrA1 and qnrS increased by between 1 and 2 orders of magnitude after 20.4 mm of rain, while levels of tetA increased by an order of magnitude after a total of 40.8 mm. After 40.8 mm of rain sulI, tetA and qnrS could be detected 300 m offshore with levels remaining high five days after the rain event. Highest levels of sewage markers and ARGs were observed adjacent to the lagoon (when opened) and in-front of the stormwater drains, pinpointing these as the points of ARG input. Significant positive correlations were observed between all ARGs, and a suite of Amplicon Sequence Variants that were identified as stormwater drain indicator taxa using 16S rRNA amplicon sequencing data. Of note, some stormwater drain indicator taxa, which exhibited correlations to ARG abundance, included the human pathogens Arcobacter butzleri and Bacteroides fragilis. Given that previous research has linked high levels of ARGs in recreationally used environments to antimicrobial resistant pathogen infections, the observed patterns indicate a potentially elevated human health risk at a popular swimming beach following significant rainfall events.


Assuntos
Antibacterianos , Esgotos , Austrália , Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Genes Bacterianos , Humanos , RNA Ribossômico 16S/genética , Água do Mar , Esgotos/microbiologia
4.
Water Res ; 218: 118534, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35537251

RESUMO

Urbanised beaches are regularly impacted by faecal pollution, but management actions to resolve the causes of contamination are often obfuscated by the inability of standard Faecal Indicator Bacteria (FIB) analyses to discriminate sources of faecal material or detect other microbial hazards, including antibiotic resistance genes (ARGs). We aimed to determine the causes, spatial extent, and point sources of faecal contamination within Rose Bay, a highly urbanised beach within Sydney, Australia's largest city, using molecular microbiological approaches. Sampling was performed across a network of transects originating at 9 stormwater drains located on Rose Bay beach over the course of a significant (67.5 mm) rainfall event, whereby samples were taken 6 days prior to any rain, on the day of initial rainfall (3.8 mm), three days later after 43 mm of rain and then four days after any rain. Quantitative PCR (qPCR) was used to target marker genes from bacteria (i.e., Lachnospiraceae and Bacteroides) that have been demonstrated to be specific to human faeces (sewage), along with gene sequences from Heliobacter and Bacteriodes that are specific to bird and dog faeces respectively, and ARGs (sulI, tetA, qnrS, dfrA1 and vanB). 16S rRNA gene amplicon sequencing was also used to discriminate microbial signatures of faecal contamination. Prior to the rain event, low FIB levels (mean: 2.4 CFU/100 ml) were accompanied by generally low levels of the human and animal faecal markers, with the exception of one transect, potentially indicative of a dry weather sewage leak. Following 43 mm of rain, levels of both human faecal markers increased significantly in stormwater drain and seawater samples, with highest levels of these markers pinpointing several stormwater drains as sources of sewage contamination. During this time, sewage contamination was observed up to 1000 m from shore and was significantly and positively correlated with often highly elevated levels of the ARGs dfrA1, qnrS, sulI and vanB. Significantly elevated levels of the dog faecal marker in stormwater drains at this time also indicated that rainfall led to increased input of dog faecal material from the surrounding catchment. Using 16S rRNA gene amplicon sequencing, several indicator taxa for stormwater contamination such as Arcobacter spp. and Comamonadaceae spp. were identified and the Bayesian SourceTracker tool was used to model the relative impact of specific stormwater drains on the surrounding environment, revealing a heterogeneous contribution of discrete stormwater drains during different periods of the rainfall event, with the microbial signature of one particular drain contributing up to 50% of bacterial community in the seawater directly adjacent. By applying a suite of molecular microbiological approaches, we have precisely pinpointed the causes and point-sources of faecal contamination and other associated microbiological hazards (e.g., ARGs) at an urbanised beach, which has helped to identify the most suitable locations for targeted management of water quality at the beach.


Assuntos
Esgotos , Microbiologia da Água , Animais , Bactérias/genética , Teorema de Bayes , Cães , Monitoramento Ambiental , Fezes/microbiologia , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Poluição da Água/análise , Qualidade da Água
5.
Front Microbiol ; 10: 473, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915058

RESUMO

Oyster diseases are a major impediment to the profitability and growth of the oyster aquaculture industry. In recent years, geographically widespread outbreaks of disease caused by ostreid herpesvirus-1 microvariant (OsHV-1 µvar) have led to mass mortalities among Crassostrea gigas, the Pacific Oyster. Attempts to minimize the impact of this disease have been largely focused on breeding programs, and although these have shown some success in producing oyster families with reduced mortality, the mechanism(s) behind this protection is poorly understood. One possible factor is modification of the C. gigas microbiome. To explore how breeding for resistance to OsHV-1 µvar affects the oyster microbiome, we used 16S rRNA amplicon sequencing to characterize the bacterial communities associated with 35 C. gigas families, incorporating oysters with different levels of susceptibility to OsHV-1 µvar disease. The microbiomes of disease-susceptible families were significantly different to the microbiomes of disease-resistant families. OTUs assigned to the Photobacterium, Vibrio, Aliivibrio, Streptococcus, and Roseovarius genera were associated with low disease resistance. In partial support of this finding, qPCR identified a statistically significant increase of Vibrio-specific 16S rRNA gene copies in the low disease resistance families, possibly indicative of a reduced host immune response to these pathogens. In addition to these results, examination of the core microbiome revealed that each family possessed a small core community, with OTUs assigned to the Winogradskyella genus and the Bradyrhizobiaceae family consistent members across most disease-resistant families. This study examines patterns in the microbiome of oyster families exhibiting differing levels of OsHV-1 µvar disease resistance and reveals some key bacterial taxa that may provide a protective or detrimental role in OsHV-1 µvar disease outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA